

Identifying genomic regions affecting milk BHB in North America Holstein dairy cattle

Shadi Nayeri¹, V. Kroezen¹, M. Sargolzaei¹², A. Fleming¹, F. Schenkel¹, C. Baes¹, A. Cánovas¹, J. Squires¹, and F. Miglior¹³

¹CGIL - University of Guelph; ²The Semex Alliance, Guelph, Ontario, Canada; ³Canadian Dairy Network, Guelph, Ontario, Canada

Metabolic diseases

- Increase in milk production accompanied by higher incidence of metabolic diseases
 - Ketosis, fatty liver, displaced abomasum
- Reasons:
 - Metabolic changes and challenges early in lactation
 - Mobilizing more fat reserves, production of non-esterified fatty acid (NEFA) and ketone bodies (including Beta-hydroxybutyrate, BHB)
- Failure to maintain energy balance
 - Detrimental effects on immune function, milk production and overall health
 - Increased incidence of displaced abomasum, ketosis, milk fever, metritis,
 cystic ovaries and lameness

Targeting a new trait for selection

 Target health traits that impact profitability for farmers and dairy industry

Metabolic Disease Resistance (MDR)

Official evaluation implemented by Canadian Dairy Network in 2016

MDR index = 50% BHB, 25% Ketosis, 25% DA

Subclinical ketosis (BHB data from DHI) Clinical ketosis and displaced abomasum (DA) (Producer recorded data)

Importance of subclinical ketosis

- Subclinical signs of ketosis are difficult to detect by farmers
- Subclinical ketosis more common than clinical ketosis
 - 10-fold higher frequency at the herd level
 - Median incidence of 11.2%-36.6%
- There is a high correlation between the amount of BHB in milk and ketosis

Correlation estimates – First parity

Phenotypic associations – Diseases and BHB

Ketosis and BHB

(Koeck et al., 2016)

Objective

Identify genomic regions and candidate genes that may affect BHB concentrations in milk associated with subclinical ketosis

Genome-wide association analysis (GWAS)

Phenotypes

Genotypes

Canadian Dairy Network (CDN)

- Subclinical ketosis
 first lactation (BHB1)
- Subclinical ketosis
 2nd and later
 lactations (BHB2+)
- De-regressed EBVs

n= 24,657 cows and bulls (Bovine 50K genotypes)

Imputed to HD FImpute V2.2.

n= 2,507 reference animals

(Garrick et al., 2009)

(Sargolzaei et al., 2014)

Functional analysis

Annotation
 R package BioMart software used for gene annotation

(Durinck et al., 2009)

Functional analysis
 Ingenuity Pathway Analysis (IPA)
 PANTHER classification system

(Kramer et al., 2014)

(Thomas et al., 2003)

Results

BHB1 – GWAS result

BHB1 – GWAS result

Functional analysis-Ingenuity Pathways

BHB1 – GWAS result

Distribution of $-\log_{10}(p)$ for BHB1

Distribution of $-\log_{10}(p)$ for BHB2+

Conclusions

Conclusions

- GWAS resulted in significant regions associated with milk BHB in first and later lactations
 - Mainly on chromosomes 6, 14 and 20
- Some of the regions identified in agreement with previous regions associated with mastitis, fat metabolism and immune response

Acknowledgements

Supported by a contribution from the Dairy Research Cluster Initiative (Dairy Farmers of Canada, Agriculture and Agri - Food Canada, the Canadian Dairy Network and the Canadian Dairy Commission) and by Ontario Genomics

Agriculture and Agri-Food Canada

Canadian Dairy

Agriculture et Agroalimentaire Canada

Commission canadienne du lait

Back up slides

Ingenuity pathway analysis results

Prediction of the gene networks for candidate genes identified for (SCK1) 24

Semantic similarity scatterplot of the over-represented GO terms (REVIGO web-server)

Functional analysis-PANTHER PATHWAYS

Functional analysis-PANTHER PATHWAYS

